
breedR’s multitrait features
UI specifications

Facundo Muñoz
March 2016

Mathematics is, to a large extent,
invention of better notations

Richard P. Feynman

Introduction

Guiding principles

• Avoid unexplicit syntaxes such as (1+x|f), us(id), idh(id) and alikes

• Do not reinvent the wheel: (re)use proven ideas and code

• Favour established syntaxes and practices

• Keep the interface as simple and intuitive as possible

• Leave some room for innovation

Covariance structures

Table 1 summarizes the possible cross-covariance strucutres of a random effect u across traits:

Table 1: Covariance structures
Name Cov. (3 tr) ASReml Notes
Uniform σ2

(
1 1 1
1 1 1
1 1 1

)
u same effect for all traits. Not supported by

PF90 (reshape)
iid σ2

(
1 · ·
· 1 ·
· · 1

)
trait:u indep. effects sharing a common var. Not

supported by PF90 (reshape)

Exchgble
(
τ2 σ2 σ2

σ2 τ2 σ2

σ2 σ2 τ2

)
u+trait:u shared variance and shared covariance. Not

supported by PF90 (reshape)

Indep.
(
σ2

1 · ·
· σ2

2 ·
· · σ2

3

)
idh(trait):u indep. effects for each trait. PF90: set

initial covars at 0

Full
(

σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

)
us(trait):u full covariance matrix. PF90: default.

1



General multitrait specification

Case 1 | same latent models

Example: two traits, one site, same fixed effects, additive-genetic random effect

Y1 = Xβ1 + Zu1 + ε1

Y2 = Xβ2 + Zu2 + ε2,

where (u1, u2)′ ∼ N(0,Σu ⊗G) and (ε1, ε2)′ ∼ N(0,Σ ⊗ In).

Σu is tipically a fully-parameterized 2 × 2 matrix, but can be constant (u1 = u2), diagonal (with etiher one
or two parameters), or have a factor-analytic structure.

Σ is tipically 2 × 2 diagonal but can have some structure as well.

breedR prototype 1

abv <- breedR_additive_genetic(dat, id = 'self', pedigree = ped)

remlf90(
fixed = cbind(Y1, Y2) ~ X,
random = ~ block + abv, # varnames or defined effects
var.ini = c(block = diag(c(1,1)),

abv = 'full',
resid = c(1,.1,2)),

data = dat
)

• structured random effects (i.e. genetic and spatial) are defined beforehand

– those named objects are subsequently used in the random section of the model specification
– their var.ini specification is gathered together with the rest, separating component definition

from inference-related technical arguments
– all random effects together in one formula
– all initial values for random effects together

• the multidimensional response is specified as a matrix (or data frame)

• all fixed and random effects are assumed to have different values for each trait

– transversal effects (i.e. uniform covariance structure) are not directly supported (ultimately by
PROGSF90)

– a workaround is to reshape the data to long-format (see last section)

• the cross-covariance structures of random effects are given in var.ini

– only the independent and full structures are supported
– implicit specification via a diagonal or full matrices
– explicit specification via keywords independent or full
– matrices can be specified either by a proper matrix or by a vector representing the lower triangle

of the matrix
– the dimensions of the matrices are consistent with the number of traits

2



• for each random effect, the summary of the fitted model should inform about

– its covariance model (e.g. iid, additive-genetic, AR, . . . )
– its cross-covariance model wrt to the traits (i.e. either independent or full)

Trait-specific effects

Case 2 | different models per trait

Example: two traits, one site

Y1 = Xβ
(1)
1 + bl + op1β

(1)
2 + ε(1)

Y2 = Xβ
(2)
1 + bl+ op2β

(2)
2 + Zu2+ ε(2),

• fixed effect X and random effect bl enter in both traits (with trait-wise values)

• op1 and op2 are trait-specific operator fixed effects

• the additive-genetic random effect u only enters trait 2

breedR prototype 2

genetic <- breedR_addgen(dat, id = 'self', pedigree = ped)
remlf90(

fixed = cbind(Y1, Y2) ~ X + op1 + op2,
random = ~ block + genetic,
traits = list(op1 = 'Y1', op2 = 'Y2', genetic = 'Y2')
data = dat)

• Only trait-specific effects need to be declared in a separate argument traits

– if omitted, all effects are assumed to be shared by all traits

• Concerns:

– the formulas are not completely meaningful by themselves
– possible alternative: trait-wise formulas. But bulky with many traits.

Grouped random effects and random regressions

Case 3 | Multi-Environment Trials (MET)

Example: one trait, three sites (or years)

• Not really a multi-trait case, but traits on different sites are often treated as different traits

– more limited: no support for transversal effects (e.g. a global genetic effect separated from the
interaction)

• some fixed effects are common (e.g. gg) while others are nested within site (e.g. block)

3



• some random effects are independently nested within site, with independent variances (e.g. spatial)

• some random effects are nested with cross-covariance between sites (e.g. genetic)

• residual variance is heterogeneous (indexed by site)

• PROGSF90 can implement this interaction by defining separate effects grouped by site

– cross-covariance structure either independent or full
– the iid cross-covariance structure (see Table 1) can also be supported via a regular interaction
(i.e. with a single shared variance parameter)

breedR prototype 3

remlf90(
fixed = Y ~ site,
random = ~ site:block + site:fam,
var.ini = list(site:block = 1, # or 'iid'

site:fam = c(1,.5,.5,1,.5,1), # 'or full' or a SPD matrix
site:resid = diag(rep(1, 3))), # 'or 'independent'

data = dat)

• Interactions defined with R’s standard colon

• Cross-covariance structures implicit in the initial specifications

– site:block: regular interaction with one variance
– site:fam: full covariance matrix (spec. as lower triangle)
– site:resid: uncorrelated heterog. residuals grouped by site

• var.ini also admits keywords iid, full and independent to specify cross-covariance structures
while using default initial values

• Omitting var.ini equivalent to single-variance interactions and homogeneous residual variances

Random regressions

• For any random effect B in the previous setting, A:B only makes sense when A is a factor

– meaning: define separate correlated (or not) effects B for each level of A

• it is equivalent to a random regression with respect to indicator variables β1jIA=1 + β2jIA=2 + · · ·,
where the coefficients βi are jointly normally distributed vectors with as many elements as levels in B.
This results in a indicator incidence matrix ZA times a vector of random regressors (β′1, β′2, . . .)′

• the covariance structure of the random regressors is given by the initial specification and the covariance
structure of B

– iid: σ2
A

(
1 0 0
0 1 0
0 0 1

)
⊗ ΣB

– independent:
(
σ2

1 0 0
0 σ2

2 0
0 0 σ2

3

)
⊗ ΣB

– full: ΣA ⊗ ΣB

4



• Extend the previous notation to the case where A is a numeric variable or a matrix β1iA
1 +β2iA

2 + · · ·

• For example:

– Let A be the (n× p) matrix of Legendre polynomials coefficients (up to order k = p− 1) evaluated
on the n values of a longitudinal variable (Year, or any climatic variable)

– breedR can provide functions to facilitate the computation of such a matrix
– include random = ~ A:genetic

• This covers a general specification of random regressions, using the same interface for grouped
random effects.

A unified interface

Case 4 | Multitrait with reshaping

• reshape the data from wide to long format:

trait value id
Y1 Y2 X -> 1 Y1 X

2 Y2 X

• use syntax for MET with new factor trait (or whatever)

• this accounts for all covariance structures from Table 1:

– uniform: random = ~ u transversal effect across traits
– iid, indep or full: random = ~ trait:u

∗ distinguished by initial value (number, diagonal or full matrices) or keyword (iid, independent,
full)

– exchangeable: random = ~ u + trait:u

• also accounts for trait-specific effects by setting to 0 the corresponding values in the dataset

– possibly with some helper function (e.g. at())

• We get multitrait, trait-specific, multisite and random regressions only by implementing the
interactions feature.

• Cost: requires a previous reshaping step and possibly setting some 0s in the dataset

• Don’t know the implications on performance (memory, speed, acuracy)

• Some models might become too complicated (e.g. simultaneously multitrait, multisite, and multiple
years)

• Is it still worth to implement the true multitrait interfaces?

Pending tasks

• Look at SAS PROC MIXED interface, for lessons to be learned from there.

5



Conclusions

• Implementing the true multitrait specifications can be worthy:

– More natural workflow
– Possibly more performant
– More flexibility for complicated models
– It does not hurt to have two different ways of fitting the same model

• Planning:

– Implement a general multitrait interface with basic functionality (i.e. assume full cross-covariances
in var.ini by default, and no trait-specific effects)

– Allow structured effects into random by defining them previously
– Implement the generalized interpretation of interactions in random
– Complete the remaining details

Thanks to Catherine Bastien, Véronique Jorge, Leopoldo Sanchez, Vincent Segura, Marie Pegard, Thibaud Chauvin and Mesfin
Gebreselassie for their valuable help and fruitful discussion in the morning session we held together at URAGPF INRA.

6


	Introduction
	Guiding principles
	Covariance structures

	General multitrait specification
	Case 1 | same latent models
	breedR prototype 1

	Trait-specific effects
	Case 2 | different models per trait
	breedR prototype 2

	Grouped random effects and random regressions
	Case 3 | Multi-Environment Trials (MET)
	breedR prototype 3
	Random regressions

	A unified interface
	Case 4 | Multitrait with reshaping

	Pending tasks
	Conclusions

