diff --git a/Mathlib/Analysis/CstarAlgebra/HilbertCstarModule.lean b/Mathlib/Analysis/CstarAlgebra/HilbertCstarModule.lean index 672132bf2adf4..0737e2de2b415 100644 --- a/Mathlib/Analysis/CstarAlgebra/HilbertCstarModule.lean +++ b/Mathlib/Analysis/CstarAlgebra/HilbertCstarModule.lean @@ -171,9 +171,6 @@ protected lemma norm_pos {x : E} (hx : x ≠ 0) : 0 < ‖x‖ := by rw [inner_self] at H exact hx H -@[simp] -protected lemma norm_neg {x : E} : ‖-x‖ = ‖x‖ := by simp [norm_eq_sqrt_norm_inner_self] - lemma norm_sq_eq {x : E} : ‖x‖ ^ 2 = ‖⟪x, x⟫‖ := by simp [norm_eq_sqrt_norm_inner_self] protected lemma smul_nonneg_iff {a : A} {r : ℝ} (hr : 0 < r) : 0 ≤ a ↔ 0 ≤ r • a := by @@ -186,14 +183,6 @@ protected lemma smul_nonneg_iff {a : A} {r : ℝ} (hr : 0 < r) : 0 ≤ a ↔ 0 refine smul_nonneg ?_ hra positivity -@[simp] -protected lemma norm_smul {r : ℝ} {x : E} : ‖r • x‖ = ‖r‖ * ‖x‖ := by - rw [norm_eq_sqrt_norm_inner_self, norm_eq_sqrt_norm_inner_self x] - simp only [inner_smul_left_real, inner_smul_right_real, norm_smul, ← mul_assoc] - rw [Real.sqrt_mul (by positivity)] - congr - exact Real.sqrt_mul_self (by positivity) - /-- A version of the Cauchy-Schwarz inequality for Hilbert C⋆-modules. -/ lemma inner_mul_inner_swap_le [CompleteSpace A] {x y : E} : ⟪y, x⟫ * ⟪x, y⟫ ≤ ‖x‖ ^ 2 • ⟪y, y⟫ := by rcases eq_or_ne x 0 with h|h @@ -263,6 +252,7 @@ lemma normedSpaceCore [CompleteSpace A] : NormedSpace.Core ℂ E where lemma norm_eq_csSup [CompleteSpace A] (v : E) : ‖v‖ = sSup { ‖⟪w, v⟫_A‖ | (w : E) (_ : ‖w‖ ≤ 1) } := by let instNACG : NormedAddCommGroup E := NormedAddCommGroup.ofCore normedSpaceCore + let instNS : NormedSpace ℂ E := .ofCore normedSpaceCore apply Eq.symm refine IsLUB.csSup_eq ⟨?mem_upperBounds, ?mem_lowerBounds⟩ ⟨0, ⟨0, by simp [HilbertCstarModule.inner_zero_left]⟩⟩ @@ -280,7 +270,7 @@ lemma norm_eq_csSup [CompleteSpace A] (v : E) : rw [mem_upperBounds] at hx have hmain : ‖v‖ ∈ { ‖⟪w, v⟫_A‖ | (w : E) (_ : ‖w‖ ≤ 1) } := by refine ⟨‖v‖⁻¹ • v, ⟨?_, ?_⟩⟩ - · simp [HilbertCstarModule.norm_smul (x := v)] + · simp [norm_smul] by_cases hv : v = 0 · simp [hv] · have hv' : ‖v‖ ≠ 0 := by